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ABSTRACT
Generative AI is rapidly transforming the practice of programming.
At the same time, our understanding of who writes programs, for
what purposes, and how they program, has been evolving. By fa-
cilitating natural-language-to-code interactions, large language
models for code have the potential to open up programming work
to a broader range of workers. While existing work finds productiv-
ity benefits for expert programmers, interactions with non-experts
are less well-studied. In this paper, we consider the future of pro-
gramming for non-experts through a controlled study of 67 non-
programmers. Our study reveals multiple barriers to effective use
of large language models of code for non-experts, including sev-
eral aspects of technical communication. Comparing our results
to a prior study of beginning programmers illuminates the ways
in which a traditional introductory programming class does and
does not equip students to effectively work with generative AI.
Drawing on our empirical findings, we lay out a vision for how to
empower non-expert programmers to leverage generative AI for a
more equitable future of programming.

CCS CONCEPTS
• Human-centered computing → User studies; • Social and
professional topics → Computing education; • Computing
methodologies → Artificial intelligence; Machine learning; • Soft-
ware and its engineering;
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1 INTRODUCTION
Large language models for code, or Code LLMs, promise to reshape
how programming is performed across the economy. Code LLMs
are large neural networks trained to perform next token predic-
tion on a mixed corpus of natural language and code; as a result,
they can be used for a range of text generation tasks that involve
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code and natural language, such as code completion and program
synthesis [56].

Code LLMs have the potential to make programmers more ef-
ficient [7, 11, 73, 82] and to broaden access to programming by
supporting natural-language-to-code interactions. In this paper,
we consider what the advent of Code LLMs means for non-expert
programming workers. We investigate the current usability of Code
LLMs for non-experts, consider the impact of traditional computer
science (CS) education on prompting ability, and envision an ed-
ucational approach for equipping non-experts to work effectively
with Code LLMs.

Code LLMs promise to reduce the technical barrier to performing
coding tasks: instead of needing to know how to write a program by
hand, a user can simply describe the desired behavior to the Code
LLM, which then generates the code. As a result, Code LLMs could
empower non-expert programmers: workers who 1) lack substantial
formal education in CS; 2) do not consider programming their
primary job responsibility; but 3) perform programming tasks at
work to facilitate their core duties. To give some concrete examples,
non-expert programmers include consultants who write code to
compute statistics; scientists who write code to interface with lab
instruments; or even restaurant managers seeking to customize
reservation systems.

CODE RUNNERS

CODE ADAPTORS

CODE WRITERS

Figure 1: Worker skills in the
programming food chain.

Non-expert programmers
exhibit a spectrum of pro-
gramming skill levels. Fig-
ure 1 provides one char-
acterization of such pro-
grammers as part of a
programming “food chain.”
The most proficient we
call Code Writers, or
workers who can write
programs independently.
More commonly, however,
non-experts areCodeAdap-
tors: they cannot write
code from scratch, but
they can understand and
adapt code from various
sources [46]. Even more
workers are Code Run-
ners: they learn to run pre-
written code by demonstra-
tion. They do not have the
skills to resolve problems
they encounter with pre-
written code, making them
beholden to others higher up in the food chain [16].
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USER

Intent

Write a program that 
sums the numbers 
from 1 to 5.

def sum_one_five():
ret = 0
for i in range(1, 6):

ret += i
return ret

NATURAL LANGUAGE

PROGRAMMING LANGUAGE

CODE LLM
OUTPUT

Figure 2: An example Code LLM interaction. Most Code LLMs allow users to specify prompts in programming language, natural
language, or a combination. The prompt is then passed to the Code LLM, which will attempt to generate output. If the model
output is not correct, or does not match the user’s intent, the user can modify their prompt and then try again.

We believe that Code LLMs could flatten the programming food

chain. Code Adaptors could use them to generate their own pro-
grams, since they are familiar with the terminology used to talk
about code and have skills related to evaluating and adapting code.
Code Runners can benefit as well: LLM-generated documentation
could help them understand code, allowing them to level up to
become Code Adaptors or even produce code themselves,1 though
there may also be concerns about the accuracy of model-generated
documentation.

However, achieving this future rests on the assumption that non-
experts can communicate effectively with Code LLMs. This may be
challenging for a number of reasons. Working with a Code LLM is
a multi-step process, involving forming an intent; describing the
intent in code or natural language; reviewing generated code for
correctness; and iteratively revising the prompt to regenerate, or
manually editing the code to fix any issues (Figure 2).

When a non-expert programmer describes their intent in natural
language, they may not use the same words that a professional
software engineer would. This is an issue, because Code LLMs are
typically trained on professionally-produced code [44]. Moreover,
Code Adaptors and Code Runners may lack the ability to judge
whether model-generated code meets their needs. While an expert
programmer would be able to manually correct portions of the
generated code, a Code Runner can only choose to discard the code
and start over. This gap between professional practice and non-
expert ability mirrors decades of challenges providing training and
feedback to Code Writers [12, 40, 74].

A key question of the future of work with Code LLMs therefore
is how they will affect non-expert programmers. Will Code LLMs
bridge the skills gap between experts and non-experts? Or will
non-experts fall even farther behind as experts are able to leverage
the power of generative AI that remains inaccessible to others?

In this paper, we consider howCode LLMswill impact non-expert
programmers for both better and worse. We focus specifically on
Code Adaptors and Code Runners, since they differ the most from
the professional programmers in previous studies of Code LLMs
in the workplace. We investigate the ways in which current Code

1See Guo [28] for discussion of this possibility within the natural sciences context.

LLMs do and do not meet their needs via a study of how non-
programmers interact with Code LLMs. We consider the ways in
which traditional Introduction to Computer Science (CS1) courses
do and do not equip non-expert programmers for the age of gener-
ative AI, and envision a new approach to training non-experts as
Code Builders, that will equip them to effectively work with Code
LLMs, ensuring that Code LLMs reduce, rather than increase, the
skills gaps between expert and non-expert programming workers.

We draw on existing studies of Code LLM use by beginning pro-
grammers in secondary school [35, 36], in CS1 courses [18, 65, 66],
and after CS1 [32, 60], which have revealed barriers related to tech-
nical communication, understanding generated code, and the un-
predictable nature of Code LLMs. We take the experimental design
from a previous study of beginning programmers [60] and adapt
it for a non-programmer population: university students with no

formal programming experience. This allows us to directly compare
non-programmers to students with one semester of traditional CS
education.

Our exploration2 considers questions relevant to numerous as-
pects of non-expert use of Code LLMs. First, we are interested in
establishing a baseline: how effective are current models for non-
programmers and what key skills do non-experts need to use such
models effectively? We are then interested in observing the effect of
traditional CS1 on participant performance, highlighting the ways
in which CS1 equips students to engage more successfully with
Code LLMs. Finally, we imagine the future by proposing the set of
key skills non-expert programmers need to succeed in the era of
generative AI. We conclude with a set of recommendations for the
various stakeholders involved: Code LLM model developers, Code
LLM interface designers, and educators.

2 CODE LLMS AS A FUTURE OF WORK
TECHNOLOGY

Our work focuses on envisioning a future for non-expert program-
mers empowered by Code LLMs. The educational background of
non-expert programmers can vary widely. Some may have learned
programming in a class setting, such as a CS1 course or a statistics

2The data collected as part of this study is publicly available at https://doi.org/10.17605/
OSF.IO/MXH35
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course with required R programming. Others engage in self-study
through an online program or as part of their job training. Our
definition of non-expert encompasses varying backgrounds, but ex-
cludes anyone with the equivalent of a computing major or minor.

Non-expert programmers from various fields are beginning to
experiment with Code LLMs and to share their experiences. For
instance, on the r/consulting Reddit, a forum for consultants, there
are many threads about generative AI. In discussions of Code LLMs,
a recurrent theme is that the commenters who report efficiency
gains typically also report prior proficiency in programming. For
instance, commenter LaOnionLaUnion writes, “I do a lot of data
wrangling from Excel and CSV files. It’s a lot faster for me to code
that in Python with [a] LLM than to do the same things inside Excel
even one let alone many times. Granted, I understand how to code
so it is not hard for me to troubleshoot, spot problems, or direct it
towards better results.”3

This quotation highlights both the promise and peril of genera-
tive AI for non-expert programmers. It can speed up routine tasks
and make it easier to work with different programming frameworks
or languages. However, working effectively with Code LLMs also
requires the ability to debug, to evaluate code quality, and to craft
prompts that the model understands. As a result, Code LLMs could
actually lead to a growing productivity gap between expert and
non-expert programmers, if only experienced programmers are
able to effectively leverage them.

Although Code LLMs have the potential to reshape many work-
places, interacting with Code LLMs is still a novel experience for
most workers. This makes studying user interactions with Code
LLMs a key research area for the future of work, echoing previous
iterations of studying user intent with novel programming tech-
nologies [47]. Specifically, our collective understanding of how to
study such interactions builds on insights from work on program
synthesis [23, 27, 31, 58], literate programming [39, 42], as well
as other areas [43, 71]. Below we summarize specifically what is
known about Code LLM interactions with different users to place
our results, and recommendations, in context.

Expert Interactions. Given our focus on Code Adaptors and Code
Runners, we study only users prompting the Code LLMwith natural
language prompts. However, existing work on code prompting
sheds light on how experts work with Code LLMs.

An early study of Code LLM-user interaction is Xu et al. [80],
which looked at 31 experienced programmers interacting with a
custom-built programming assistant in PyCharm. Much subsequent
work uses Github Copilot (2021), one of the first publicly available
Code LLMs, as the backend. Copilot notably allows both natural-
language-to-code and code-to-code interactions. Vaithilingam et al.
[73]’s study of 24 experienced programmers showed that partici-
pants found Copilot useful for basic coding tasks and to replace
search behaviors. In three studies of Copilot interactions, Bird et al.
[11] find an increase in programmer productivity and speed, at the
cost of program understanding.

Other work has focused on developing theories of Copilot-expert
interaction. Barke et al. [7] develop a grounded theory for Copilot
interaction based on a study of 20 expert participants. They find

3https://www.reddit.com/r/consulting/comments/17stayn/do_you_actually_believe_
that_chatgpt_made_bcg

two main interaction modes, acceleration and exploration, which
allow for programmers to make progress on the given tasks. A more
recent, at-scale survey of 410 developers [53] confirms and expands
Barke et al. [7]’s findings. Of particular relevance to our work is
their finding that participants requested more natural language
prompting as part of their existing Code LLM tools. When describ-
ing why users prefer natural language/chat, they report “because
providing clear explanations, often in natural language, was the
most cited strategy to having AI programming assistants produce
the best output” [53].

Taken together, these works suggest that Code LLMs can have a
positive effect on expert interaction. However, these studies operate
on the assumption that participants have enough knowledge to
prompt the model and understand its output. Our work explores
how the lack of these skills may inhibit non-experts and asks how
we can structure skill acquisition so that non-experts also experi-
ence productivity gains from Code LLMs.

Non-Expert Interactions. When considering non-expert program-
mers, we draw upon existing work studying Code LLMs in educa-
tional spaces. Prather et al. [66] study 19 students in an Introduc-
tion to Computer Science (CS1) course working with Copilot on a
Minesweeper final project in C++. They find two behaviors unique
to the beginning student population, in comparison to experts: the
phenomenon of attempting to coerce Copilot to generate code (shep-
herding) and a back-and-forth cycle of hesitantly accepting, then
deleting, presented code (drifting). Jayagopal et al. [32] report on an
observational study of how second-semester CS students interact
with Copilot and four programming tools, highlighting important
design decisions for user interfaces. Our work complements these
findings: we look at participants without any formal CS education
(non-programmers), who are more akin to the larger population of
non-experts.

Turning to natural language prompting, researchers have consid-
ered user interactions with Code LLMs via written descriptions as
well. Kazemitabaar et al. [35, 36] study secondary school students
with and without access to Copilot in an online learning environ-
ment, finding that access to the Code LLM was not associated with
a decline in student learning. However, tasks were presented to
students in natural language, which led students to copy/paste
the expert-written description into the model around half of the
time. As a result, it is hard to use their data to understand whether
students would be able to write effective prompts on their own.

Other studies address this limitation by adopting different task
presentations. Denny et al. [18] and Prather et al. [65] used a vari-
ety of visual mechanisms to present problems (Prompt Problems),
including images of terminal output and graphics of judges holding
score cards. They found this effective in a deployment during the
second week of a CS1 course. Nguyen et al. [60] presented problems
through input-output examples in their study of 120 students who
had completed CS1. We adapt and extend their design to students
without formal CS education in our study.

Multi-turn interactions. Our work focuses on single-turn interac-
tions: participants provide a natural language description, which
is used to prompt the model, and if the interaction is unsuccessful,
the user edits their prompt and tries again. However, some models
also support multi-turn interactions, where the model has access

https://www.reddit.com/r/consulting/comments/17stayn/do_you_actually_believe_that_chatgpt_made_bcg
https://www.reddit.com/r/consulting/comments/17stayn/do_you_actually_believe_that_chatgpt_made_bcg
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to the entire history of interactions with the user while generating
its response. There is little existing work on multi-turn interac-
tions, since they are not easily studied in controlled experiments.
Ross et al. [70] is one exception; they conduct a study of 42 ex-
perienced programmers interacting with a conversational Code
LLM-based assistant and find that it is positively received. A rare
case of domain-specific work is Chen et al. [14], which looks at
experts and novices using an LLM to aid programming in a lan-
guage designed for agent-based modeling. They find a “knowledge
gap” between experts and novices that mirrors the gap we observe
between beginners and non-programmers.

3 CHALLENGES WITH STUDYING CODE LLM
INTERACTIONS

When developing studies on non-expert interactions with Code
LLMs, there are some key design decisions. Using Code LLMs in-
volves several processes: forming an intent, expressing the intent as
a natural language prompt, interpreting model output, and iterating.
All of these steps are more challenging for non-programmers than
for experienced programmers.

In a controlled environment, where the programming tasks have
been pre-selected, there are multiple options for presenting a task.
Although a natural language presentation may seem natural, it has
a substantial drawback: as previous work has found [35], when
participants are shown natural language descriptions, they tend to
copy/paste instead of writing their own prompts. An alternative is
to present tasks through examples [18, 60] (Figure 3). Specifically,
participants are given a set of input/output pairs illustrating what
the program should do.

Another design decision is the interface to the Code LLM. Code
LLMs are being integrated into many popular IDEs,4 such as Mi-
crosoft’s VSCode. However, non-expert programmers may not be
familiar with IDEs and may find the variety of features overwhelm-
ing; even the second-semester CS students in Jayagopal et al. [32]
struggled with the Copilot/VSCode integration. This is why many
CS1 classes use simple text editors or IDEs designed specifically for
teaching. Therefore, though studies of expert programmers often
use IDE-integrated Code LLMs, studies of non-experts often use
simple platforms that restrict how users interact with the model.

One of the most challenging aspects of the Code LLM task for
non-experts is evaluating the generated code for correctness, style,
etc. In studies of programmer interactions with Code LLMs, there
is a tension between studying prompt writing and code evalua-
tion. If non-experts make mistakes in judging the generated code,
they may move on from a task without actually completing it;
however, providing feedback on the generated code to guide the
participant removes the opportunity to study the code-judging step
of the full Code LLM interaction loop. Previous work has shown
that determining correctness is a challenging task for expert pro-
grammers [73]. For this reason, we choose to focus our study on
how non-programmers engage in the prompt-writing and prompt-
modifying steps of the process, and take care of the code-judging
step for our participants.

4An integrative development environment, or IDE, is a program for writing software
that incorporates features beyond simple text-editing, such as syntax highlighting,
auto-complete, and debugging tools.

4 HOW DO NON-PROGRAMMERS INTERACT
WITH CODE LLMS?

To illustrate the challenges that non-experts currently face in in-
teracting with Code LLMs, we present a study exploring how non-
programmers work with Code LLMs to solve problems drawn from
traditional Introduction to Computer Science (CS1) courses. We
replicate the experimental methodology of Nguyen et al. [60], but
with a non-programmer population. By adopting the same exper-
imental paradigm, we can compare our populations and explore
how CS1 does and does not prepare students to effectively use
Code LLMs, in addition to understanding how non-programmers
approach the natural-language-to-code task.

4.1 Experimental Design
Participant Recruitment and Screening. We recruited 67 under-

graduates from two primarily undergraduate institutions, Oberlin
College and Wellesley College, in late 2023.5 Students were eligible
if they had no prior programming experience. Recruitment was
done by email, announcements in humanities classrooms, and fly-
ers. The study took around 45 minutes; participants received a $30
USD gift card. The study was approved by the IRB at Wellesley
College under a reliance agreement with Oberlin College.

Our study targeted students with no prior programming expe-
rience. However, many undergraduates today have some limited
exposure to programming through extracurricular activities or non-
CS classes in secondary school. We screened each participant by
asking about various types of programming experiences. We ex-
cluded students who had taken high school or college courses with
weekly programming tasks, including non-CS courses like statis-
tics; had done a summer internship involving programming; or had
participated in a recurring extracurricular programming class or
club, like a robotics club. We included participants who had taken
courses with one or two programming activities, for instance, a
middle school math course with a week of Scratch exercises. We
did not filter participants based on previous knowledge of LLMs
or Code LLMs; rather, we asked whether they had heard of several
popular models in the post-task survey to gauge familiarity.

Materials. We used a subset of the programming tasks from
Nguyen et al. [60], removing their complex data structure and
math categories. Four problem categories remained: strings, lists,
conditionals, and loops. The Nguyen et al. [60] problems were
sourced from CS1 courses so that they would be at an appropriate
level for their participants, who had taken CS1. It is harder to
determine the right difficulty for non-programmers, since they
have more varied mathematical backgrounds; however, using the
same problems lets us draw direct comparisons between the two
studies.

Model. To facilitate comparison, we used the same Code LLM
as Nguyen et al. [60]: OpenAI’s Codex (code-davinci-002) model.
At the time of the study, Codex was used in the free version of
ChatGPT and outperformed the model that was in use for GitHub
Copilot’s inline completions [81]. Moreover, larger models like

5These institutions are US small liberal arts colleges (∼2,500 total students), where most
students are studying for Bachelors of Arts degrees across majors in the humanities,
social sciences, and natural sciences



Non-Expert Programmers in the Generative AI Future CHIWORK ’24, June 25–27, 2024, Newcastle upon Tyne, United Kingdom

Figure 3: How the natural-language-to-code task is presented to participants. On the left is a (tutorial) task described by a set of
input-output examples along with the function signature. Participants write their description in the text box and then press
Submit. On the right is part of the result screen: in this case, 4 tests failed and are highlighted. Not pictured: the generated code
and the buttons to re-try the problem or move on.

GPT-4 [64] have high latency, which frustrates expert [59] and
non-expert users [37]. Using Codex also reflects the reality of non-
experts, since state-of-the-art models tend to have higher cost or
other barriers to use.

Procedure. Our study consisted of a short tutorial, followed by
four Python natural-language-to-code tasks, and a survey. Our ex-
perimental procedure was based on Nguyen et al. [60] with some
key modifications. Although we use the same web-based platform,
we created a more substantial tutorial for non-programmers with
simpler problems (Figure 3). We reduced the number of tasks from 8
to 4, removing themore difficult timed tasks, and removed questions
asking students to rate the generated code. Moreover, our study
was conducted in-person rather than remotely: we used computer
classrooms where students worked individually on separate com-
puters. Experimenters were present to answer questions or resolve
technical difficulties, but otherwise did not intervene. This meant
we adapted both the task debrief and a subset of the interview
questions from Nguyen et al. [60] into survey questions.

Participants were screened for prior programming experience
and led to a computer. After completing an informed consent form,
they worked through a short tutorial introducing them to the plat-
form and the Code LLM tool, which was presented using a cow
avatar named Charlie (Figure 3). The main study consisted of four
tasks assigned randomly via a latin square design (similar to that
done in Nguyen et al. [60]), each presented as a set of input/output
examples (test cases). Students wrote a description of the problem in
natural language in a textbox. It was then reformatted as a Python
docstring, joined to the function signature, and used to query the

Code LLM.6 The generated code was then displayed to the student,
along with the result of running the test cases that the student
had been shown. Students were free to reattempt the same task
repeatedly or to move on to the next task at any time.

After the main study, participants completed a short survey with
questions about their experiences in the experiment and demo-
graphic questions. We adapted validated instruments from previous
work [4, 8, 29, 30] to measure perceptions of the AI tool, mental
workload of the task, and participant math anxiety. We also asked
questions related to AI ethics and participant perceptions of AI.
Finally, there were three open-ended questions that asked partic-
ipants to reflect on issues or problems they ran into, how they
thought Charlie worked, and any other comments on Charlie.

4.2 Evaluation Metrics
4.2.1 Quantitative. We measure participant success on the model-
prompting task in twoways. First, we look at their eventual successes:
did they ever solve the problem during the study? A success occurs
when the model generates code that passes all tests in the test suite.

Second, we look at the reliability of their prompts in general.
Code LLMs are stochastic: they may generate different programs
for the same input. A reliable prompt is one that works when it is
resubmitted to the model multiple times. We measure this by rerun-
ning each prompt 20 times, and counting how often the generated
code is correct. A highly reliable prompt will lead the model to
generate a correct solution each time it is queried, for a reliability
score of 1 (20/20).7 We use the open-source StarCoder model [52]

6Nguyen et al. [60]’s Figure 4 provides a diagram of this process
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to estimate reliability rather than Codex, both for reasons of cost
and to aid comparison with the results reported in Nguyen et al.
[60].

4.2.2 Qualitative. Participants answered three open-ended ques-
tions as part of the post-task survey, the results of which we present
below. Both authors were involved in the analysis of the partici-
pant responses and employed a lightweight open coding approach.
Complete consensus was achievable, given the relatively concise
nature of the 201 total data points. The codebook8 was developed to
describe trends in this work and does not provide a general theory.

It is important to note that the same authors also conducted
the qualitative analysis for Nguyen et al. [60]. We attempted to
mitigate the effects of this previous experience by developing a
novel codebook from an inductive analysis process and refraining
from actively referring to the Nguyen et al. [60] codebook during
analysis.

The coding process was as follows. Each researcher indepen-
dently developed a series of codes for the participant responses
to each question. They then met to discuss the codes, investigate
themes amongst the codes, and agree on an intermediate set. They
re-coded the data independently using the revised codes. Another
session was held to finalize the set of codes and reach consensus
on their application to all data points.

Quotes presented below are direct selections from student re-
sponses, other than where noted inline. We have anonymized re-
sponses that might have disclosed personal identifiable information.

5 RESULTS
Our study investigates the feasability of the natural-language-to-
code task for users with no programming experience as a proxy
for the possible challenges Code Adapters and Runners may face.
We explore quantitative measures of success, discuss participant
perceptions of the task, and compare our results with findings from
Nguyen et al. [60], which applied the same methodology to study
beginning programmers after a single CS1 course.

5.1 Basic Findings
In this section, we present basic findings from our study, address-
ing the success of non-programmers and broad trends from our
qualitative analysis of the open response data related to overall task
experience.

5.1.1 Were Non-programmers Successful? Our experiment asked
non-programmers to solve CS1 programming tasks by describing
them in natural language to a Code LLM. Overall, participants found
the task difficult and were only moderately successful, solving, on
average, 1.4 of 4 total problems. Moreover, the average prompt
reliability score was 0.088 for all prompts and 0.42 for successful
prompts. This means that even prompts that were successful during

7When benchmarking models, it is common to calculate more lenient measures, such
as pass@10 (if the model is given 10 attempts, does it ever generate a correct solution?) or
even pass@100 (if themodel is given 100 attempts, does it ever generate a correct solution?).
The reliability scores that we report are pass@1 [15], which has become the standard
metric used in the evaluation of Codex [15], GPT-4 [64], Code Llama [6], and others [26,
52, 62]. Following standard practice, we compute this over 20 samples to ensure
robustness to the stochasticity inherent to the Code LLM generation process [52].
8Available at https://doi.org/10.17605/OSF.IO/MXH35
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Figure 4: Prompt reliability rates by problem. The graph
compares reliability of prompts written by beginners from
Nguyen et al. [60] in comparison to non-programmers from
the current study

the experiment passed less than half of the time when re-querying
the model.

5.1.2 How Do Non-programmers Compare to Beginners? Although
many beginning programmers in Nguyen et al. [60] found the task
difficult, there is a wide gap between their beginners and our non-
programmers. When we compare the reliability of their prompts
across problems (Figure 4), the non-programmer prompts are less
reliable for all but one problem (discussed in Section 5.3.1).

Table 1 summarizes key quantitative comparisons between the
two groups of participants. Note that the participants in Nguyen
et al. [60] attempted eight problems; we consider only their first four
untimed problems, which we reused in our study. On average, non-
programmers solved one fewer problem during the experiment than
beginners. This does not reflect lower effort or less engagement,
since non-programmers submitted more prompts per problem. This
indicates that they were willing to retry problems when they failed,
in some cases, many times: one non-programmer submitted 90
prompts, but only solved 2 of the 4 problems; another tried 42 times
without ever succeeding.

5.1.3 Are there power users? Non-programmer-written prompts
have low prompt reliability scores, even when we consider prompts
that succeeded during the experiment. A question that we might
ask is whether there are any “power users"– non-programmers with
prior experience prompting LLMs who are able to transfer these
skills to Code LLMs. In Nguyen et al. [60], the best participants had
prompt reliability rates of around 80% (5 participants, solving all
or all but 1 problem). In this study, the highest participant prompt
reliability rate was 29%; this participant solved only half of the

https://doi.org/10.17605/OSF.IO/MXH35
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Beginners Non-programmers
Mean Eventual Success Rates 2.6 1.4

Mean Prompt Reliability, All Prompts 0.26 0.088
Mean Prompt Reliability, Successful Prompts 0.62 0.42

Mean Submissions Per Problem 2.75 3.5
Table 1: Quantitative comparisons of prompt performance across two metrics from Nguyen et al. [60]’s beginners and the
non-programmers from the current study

Category N
Wording Matters 28
Charlie Doesn’t Understand Me 22
Trouble Writing a Description 22
Couldn’t Make Progress 16
We Just Didn’t Work Well Together 12
Trouble Understanding the Problem 8
Error Messages 6
Hard To Understand The Output 5
Randomness 3
I am Not a STEM Person 3

Table 2: Codes emerging from responses to What kinds of
problems or issues did you run into working with Charlie?

problems.9 Thus, although all participants reported that they had
heard of GPT-3 or ChatGPT (Appendix C.2), there is no evidence
that our non-programmers were able to transfer prior experience
with other LLMs into successful Code LLM prompting strategies.

5.1.4 Communication Gone Awry. Our post-task survey asked par-
ticipants to reflect on any problems or issues that they ran into
when working with Charlie (Table 2). A key trend throughout was a
general sense of communication failure. Our participants were less
likely to attribute blame to the model than those in Nguyen et al.
[60], 19% of whom complained that Charlie rejected valid prompts
(n = 23). Instead, our participant’s responses reflect an overall feel-
ing of things going wrong without a specific sense of what could be
improved. We identified 12 out of 67 non-programmers as reporting
“We Just Didn’t Work Well Together” (Table 2), or that they were
unable to work effectively with the Code LLM and unsure who to
blame. For instance, silverHazelnut expressed a clear sense that
things were going wrong without a clear sense of why: “[...] de-
spite trying multiple variations of instructions, I would still receive
incorrect outputs. Maybe my descriptions were not long enough or
descriptive enough to get him to do what he needed to do.”

5.1.5 Hard to Strategize. A second trend was a sense of getting
stuck: after trying various approaches to writing prompts and still
not succeeding, participants ran out of strategies to use. They men-
tioned this throughout their responses (Table 2, Couldn’t Make
Progress & Charlie Doesn’t Understand Me and Table 4, Negative
About Task). For instance, coralAster commented, “Sometimes he
just couldn’t understand what I was meaning and would make the
same mistakes over and over again.” A more emotive description
93 participants solved all four problems, but their prompt reliability scores were very
low (0.03-0.15), suggesting they were simply lucky in the moment.

of the same feeling was provided by pinkIndigo: “It was definitely
frustrating to feel like after putting a lot of thought into this, it
didn’t work most of the time. It felt like I was trying to explain
something to a little kid, but even worse, because I did not know
how to relate to the technology in a comprehensible way.”

Unlike the beginning programmers in Nguyen et al. [60], who
developed a variety of strategies and even, in some cases, sought
to systematically test the model’s capabilities, non-programmers
reported running out of ideas about what to try next. redHazelnut
noted, “Even though I located the patterns and tried to convey it in
understandable terms, for some problems it seemed like nothing
would get through.” This is a participant who claims to understand
the task, but cannot communicate it effectively to the model. Simi-
larly, yellowIndigo reported, “I kept trying to think of different
ways for Charlie to have the correct output, but after doing it a
few times I would get frustrated. This made me not want to help
Charlie at all.” Overall, our findings suggest that non-programmers
may lack the resources to develop effective prompting strategies
on their own or even to make progress on the task.

5.2 The Impact of Previous CS Education
A key question driving our research is how to prepare non-expert
workers of the future to use Code LLMs. By comparing the strug-
gles of non-programmers to those of beginning students, we can
measure the contribution that CS1 makes towards facilitating Code
LLM use. How is the task easier for participants who have taken
CS1? Are there challenges that still remain? Below we highlight
findings related to the impact of previous CS education on student
prompting.

5.2.1 Explaining in English. A key challenge highlighted by non-
programmers was expressing the task in natural language (Table 2,
Trouble Writing a Description). silverHazelnut commented, “It
was difficult to articulate what I wanted the output to be.” Similarly,
plumLupine wrote, “I felt like I knew what the answers were, but
I didn’t know how to write them out in the description.” These
responses show how non-programmers struggle to map problem
understanding to natural language.

Beginning students also discussed grappling with this aspect
of the task in Nguyen et al. [60]. This suggests that describing
technical concepts in natural language is a key skill, but one that
takes some time to develop. Although CS1 gives students some
practice with expressing technical concepts in natural language,
it is an ongoing learning process for beginner programmers, who
require more than one traditional computing course to fully develop
this skill.
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5.2.2 Technical Terminology. Although communicating their in-
tent is a challenge for both non-programmers and beginners, be-
ginners have a key advantage: they are familiar with programming
terminology. One of the biggest gaps we observed between our
participants and the students in Nguyen et al. [60] was their knowl-
edge of Python vocabulary. Many of the beginning students in
Nguyen et al. [60] developed a strategy of using Python keywords
in their prompts. In contrast, this strategy was not available to our
non-programmers.

In fact, 42% of students brought up an issue related to word-
ing their prompts in the post-task survey (Table 2, Wording Mat-
ters). For instance, bisqueIronweed wrote, “There seems to be
a formula or computer language that I needed to know in order
to fluently communicate with Charlie” and tomatoRedbud men-
tioned they “[...] didn’t know how to dictate parts of a sequence [...]”
Another participant pointed out how this acts as a barrier to non-
experts, writing, “If [...] one’s ability to program effectively using
this tool relies on knowing the keywords, this is pretty inaccessible.”
(pinkIndigo).

5.2.3 Challenges with Vagueness and Specificity. Our participants
struggled with the model’s inability to handle vague or underspec-
ified descriptions. This echoes themes from work on beginning
students [36, 60], including Babe et al. [5]’s finding that to Code
LLMs, beginner-written prompts are often underspecified, leading
them to generate multiple semantically-distinct programs from a
single prompt.

Many non-programmers were critical of this aspect of the model
in their post-task survey responses (Table 2, Charlie Doesn’t Un-
derstand Me and Table 4, Negative About Task). For instance, or-
angeStrawberry wrote that “Charlie required explicit and clear
instructions, failing to make small jumps/assumptions”, while yel-
lowIndigo commented: “I think it would be better if Charlie could
take in information that isn’t super clear. For example, I think my
commands were very reasonable and I even kept changing my
prompt to be more clear but it still wasn’t working.”

Non-programmers pinpointed a specific aspect of technical lan-
guage overlooked by beginners: the fact that colloquial synonyms
cannot be interchanged with technical words. For instance, though
“group” and “set” might be used synonymously in ordinary speech,
they have specific technical meanings when used to talk about code.
Non-programmers were surprised that the model did not under-
stand substitutions of synonyms. For instance, siennaRedbudwrote
that Charlie “should be able to take into account multiple phrases
in order to be able to guess at what you want [...] if I was trying
to tell it to change the order I could put change/mirror/flip/order.”
Similarly, crimsonIndigo commented that Charlie “was unable to
respond to the differences in language I was using, even though
they were synonyms of words [Charlie] recognized.”

This is an aspect of technical communication that is rarely dis-
cussed explicitly in CS1, but that is certainly practiced throughout
the course. Nguyen et al. [60] do not highlight any issues or confu-
sion around this point in their analysis, reflecting how by the time
students have completed CS1, the rigid meaning of technical terms
is second-nature to them.

5.2.4 Understanding Model Output. Working with Code LLMs is
an iterative process: once a prompt is submitted, the user assesses

the generated code and, if necessary, modifies their prompt to
resubmit. In our study, as in Nguyen et al. [60], the generated code
was automatically tested and displayed to students along with the
output of the test cases. Beginners in Nguyen et al. [60]’s study
used the generated code to figure out how to edit their prompts:
around a quarter (n = 29) looked at the generated code before the
test cases. Some identified specific issues with generated code, such
as its use of unfamiliar Python features (n = 5), which suggests that
they were reading the code line-by-line.

By contrast, our non-programmers rarely mentioned the gen-
erated code at all; only 5 participants expressed issues with un-
derstanding the model output (Table 2, Hard to Understand The
Output). This likely reflects a lack of engagement with the code,
rather than a lack of issues. Non-programmers who mention the
output report struggling to understand it at all, rather than the
specific issues identified by beginners [60]. For instance, crimson-
Pepperbush wrote, “Everything I seemed to put into the textbox
came out incorrectly. I was just having a hard time understanding
the functions and also the answers that [C]harlie produced.”

Some participants also discussed struggling with the error mes-
sages that were displayed when the generated code raised an error
at runtime (Error Messages, n = 6). For instance, pinkHolly com-
mented, “Sometimes I hit a wall into something I did wrong and
would copy and paste the original description text to try again
and see what did. But then it would say run failure and I had no
idea why. By the end, the poor cow was confused and so was I.”
Without being able to read code or understand error messages,
non-programmers lacked useful feedback on how to improve their
prompting strategies: pinkLupine, for instance, “... wish[ed] Charlie
was able to describe why the code didn’t produce the desired output
so [they] could adjust the prompt.” These difficulties contributed to
the general sense of feeling stuck discussed in Section 5.1.5: when
their prompts failed, non-programmers had little information that
was useful to them for editing.

5.3 How Do Non-programmers Word Prompts?
Above we consider how non-programmers related to their prompts;
here we explore the prompts themselves. We present two cases
studies of the natural-language-to-code task: andCount, a problem
that non-programmersmostly succeeded at, and readingIceCream,
a problem that was difficult for them.

5.3.1 Prompting Case Study 1: andCount. The andCount task is
an outlier: out of all 24 problems, it is the only one where the
non-programmers’ prompts outperformed the prompts of Nguyen
et al. [60]’s beginning students. The reliability of non-programmer-
written prompts for this problem was strikingly high: our non-
programmer prompts had an average reliability score of 0.94, com-
pared to 0.58 in Nguyen et al. [60] (Figure 4).

andCount is a function that takes in a list of four Python strings,
containing four characters that are either ‘-’ or ‘&’, and returns
the total number of ‘&’ characters in all strings. As an example,
andCount([‘--&-’,‘----’,‘-&--’,‘---&’,]) should return 3.
In total, 11 non-programmers attempted this problem, and all but
one succeeded on their first attempt.

When we inspect the non-programmer-written descriptions, we
find three styles. The most common (9/12) and effective strategy
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was to describe the problem as simply counting the number of
ampersands (e.g., “count the number of & symbols that are given in
the input.” – navyHolly). One point of variation across all partici-
pants was how they described the key character: one used the word
“ampersands,” five used & without quotes, and five used quoted
strings: either a full example (e.g., contained ‘--&-’), ‘&’, or “&”.
This variation reflects that fact that, without prior programming
experience, non-programmers have only the examples and gener-
ated code to guide them towards understanding string types and
how they are formatted in Python.

The participant who did not succeed at this problem provided
the following prompt twice, adding total the second time: “state
the total number of & signs that appear in the bracket.” Notably,
this is the only non-programmer who attempted to address the
problem’s input type (a Python list).

We posit that non-programmers’ avoidance of describing the
data type actually helped them on this problem. In Nguyen et al.
[60]’s set of prompts, beginners often make mistakes when they try
to be specific about how the data is structured. This is a rare case of
when a high-level description with no mention of data types works
well, allowing non-programmers to succeed.

5.3.2 Prompting Case Study 2: readingIceCream. readingIceCream
exemplifies the other end of the success spectrum. This function
takes a list of Python strings and returns the sum of all the numbers
in the strings. The input data is complex: each string represents
one line of a tab-separated value (tsv) file. For instance, the input
["salty\tfrozen yogurt\t10"] should produce 10.

The same 11 students attempted this problem as andCount. They
submitted 63 total prompts – none succeeded during the study
and all prompts had a reliability of 0. The maximum number of
tests passed was 2 out of 3, achieved by 19% of the prompts (four
participants).

We manually inspected the 63 prompts and categorized them
into zero or more categories based on three common attributes: (a)
mentioning summing up all the numerical values, (b) mentioning
the \t symbol, a “t”, or the location of the number in the string
relative to the tab, and (c) mentioning that the number was at the
end of the row or line using only words.

Overall, 76% of prompts (10/11 participants) mentioned adding,
totaling, or summing all the numbers. 41% of prompts discussed the
location of the number relative to the tab character. Finally, 22% of
prompts mentioned that the number appeared at the end of the line.
These two categories were mutually exclusive: no one mentioned
both the tab and the end of the line, although some mentioned the
characters after the tab.

When we consider the task, it seems that a prompt that men-
tions adding the numbers and some information about the location
of those numbers in the string should be a sufficient description.
We find that 29/63 (46% of) prompts written by 8/11 participants
meet this standard. One example is aquaAster’s “add values at the
end of each line and output the sum.” Notably, none of these 29
prompts resulted in model success. We see readingIceCream as
reinforcing the findings above: in some cases, students write poor
quality prompts due to lack of technical knowledge, while in others,
the model fails to understand prompts that do accurately capture
all components of the task.

Category N
Other or Irrelevant Statement 20
Keywords 13
Explicit AI/ML Mention 13
Translation 13
Charlie’s Behavior is Hardcoded 10
Knows About Code 9
Knows About Data 7
Machine Learning is Happening 7
No Idea 4

Table 3: Codes emerging from responses to How do you think
that Charlie works? What is happening behind the scenes?

5.4 Non-programmer Attitudes
The post-task survey contained scales to quantitatively measure
non-programmer perceptions of the task, as well as open-response
questions about their experiences. In this section, we discuss how
participants felt about the task and about themselves after partici-
pating. We provide additional data in Appendix C.

5.4.1 Non-programmerMental Models. Our post-task survey asked
participants to describe how they thought Charlie worked. Since
they had no background in CS, we did not expect them to have fully-
developed mental models of how the technology worked. However,
all participants had heard of either GPT-3 or ChatGPT (Appendix
C.2), so they were familiar with the concept of generative AI.

Table 3 summarizes the explanations of the system provided by
students. Many students have a keyword-retrieval (19%) or trans-
lation (19%) mental model, echoing themes from Nguyen et al.
[60]. The same number mentioned AI or machine learning in their
responses, though few gave any explanation of how these tech-
nologies work. We note that although many beginning students in
Nguyen et al. [60] posited a database or dictionary lookup mental
model, only one participant response in the Keywords code men-
tioned the word “database.” It is possible that students develop this
incorrect mental model after learning about dictionaries in CS1.

One striking finding is that some students believed Charlie’s
responses were hard-coded (Table 3, Charlie’s Behavior is Hard-
coded). bisqueIronweed wrote, “I think Charlie tries to match our
description with the languages/code work that was programmed in
Charlie,” and olivePepperbush replied that “I think Charlie is prob-
ably designed with a set of responses but I don’t really know what
goes behind the scenes to make this work.” These participants ap-
pear to think that Charlie was not truly generative, but rather, that
there was a single correct answer pre-programmed (pinkRedbud:
“Charlie compares my answers to the correct answers in the ma-
chine”), which would be retrieved if their description used the right
words (navyTea: “I think that the system has been programmed
to be able to perform some commands, and when you use those
commands correctly, then the system is able to perform the task.”).

5.4.2 How Did Non-programmers Feel About the Task? Throughout
our post-task survey, non-programmers commented on the emo-
tional experience of participating in the task. 13% of participants
brought up negative emotions in response to our final question
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Category N
Positive About Charlie 26
No 20
Stressed, Frustrated or Confused 9
Positive About Task 6
Negative About Task 6
Negative About Self 5
Comment About Experiment, Not Task 5
Cow Lessens Stress 4
Negative About Charlie 3

Table 4: Codes emerging from responses to Anything else
you’d like to share with us related to Charlie?

(Table 4, Stressed, Frustrated, or Confused). For instance, goldSun-
flower commented, “The cow was really cute and I wanted to like
it but in the end we were both stressed and confused.” tanStraw-
berry wrote, “[A]s someone with no coding experience I was very
confused at first [...]” Even some participants who ended up liking
the task commented on the negative emotions they experienced.
For instance, limeHolly responded, “It was frustrating definitely,
but also kind of fun.” So, although there were about equal number
of participants who left positive and negative comments about the
task, it is clear that the task was, at times, stressful, confusing, or
frustrating for many participants.

Several participants (n = 4) explicitly mentioned that the avatar
made the task less daunting: linenTea noted, “I think the cow
aspect made it less intimidating and it was overall pretty fun to
do”, and navyRose wrote, “the cow was pretty cute. I think that
lessened some of stress.” Although we did not intentionally design
the platform with this goal in mind, since our study reused an
existing experimental platform, this unexpected finding highlights
the impact of UI design decisions for burgeoning programmers [48].

5.4.3 How Did Non-programmers Feel About Themselves? In addi-
tion to negative feelings about the task, some non-programmers
reported negative feelings about themselves as a result of participat-
ing (Table 2, I am Not a STEM Person and Table 4, Negative About
Self). For instance, grayPepperbush mentioned, “I just wasn’t very
sure what I was dealing with. I think if I had more of a problem-
solving brain it would have been more straight forward.” Similarly,
tealPepperbush commented, “I’m incompetent at coding so some-
one who knows how to prompt Charlie would meet more success?”
Nguyen et al. [60] do not mention any similar instances of negative
self-talk.

Compared to the beginning programmers in Nguyen et al. [60],
who blamed the model for many miscommunications and pin-
pointed specific model weaknesses, our non-programmers were
more likely to blame themselves when things did not work. For
instance, pinkHolly commented “Charlie’s cute, but I feel incred-
ibly stupid not knowing what was happening.” This behavior is
particularly striking as participants were specifically recruited to
this study because of their lack of experience.

One possibility is that the task activated existing anxieties around
computational and mathematical skills. Due to institutional de-
mographics, most participants were women, a population among

whom math anxiety is more prevalent [29]. As part of the post-task
survey, participants rated their level of math anxiety using a 0 to 10
math anxiety scale [4, 29]. We observe an average rating of 5.5 (SD:
3.0)– surprisingly high, given that Hart and Ganley [29] report a
mean of 2.44 for all high school graduates, and our participants at-
tend selective colleges.10 If participants were already math-anxious,
taking part in the programming task could have awakened prior
feelings of shame or inadequacy.

Whatever the reason for the negative self-feelings reported in
our post-task survey, our results suggest that the stakes are high for
non-expert interactions with Code LLMs: if things go poorly, non-
programmers may take it as evidence that they are not well-suited
for programming, rather than evidence that the model is poor or
that their prompting could be improved.

6 PREPARING NON-EXPERTS FOR THE CODE
LLM FUTURE

The results of our study suggest that non-programmers are not able
to effectively work with Code LLMs on their own. We find that
non-programmers struggle with numerous aspects of the interac-
tion, and experience stagnation: they run out of approaches to try
without discovering an effective strategy (Section 5.1.5). How can
we help prepare non-programmers, and other non-experts, for a
generative AI future?

Our comparison with Nguyen et al. [60] reveals ways in which
a traditional CS1 course does not equip students to effectively use
Code LLMs (Section 5.2). For students who study computer science,
this is not a problem, because we know that traditionally-trained
professional programmers can leverage Code LLMs [7, 11, 53, 59].
But for the future non-expert, our findings suggest that a traditional
CS course may not be the best fit in the age of generative AI.

In this section we lay out a vision for training non-experts to
effectively work with Code LLMs inspired by both the study con-
ducted here and other related findings. Rather than teaching com-
puter science, or even programming, we envision this training as
teaching code-building: the ability to solve code-related tasks
in a way that moves fluidly between code generation and code
adaptation.

We envision a future where a non-expert programmer can level
up from a Code Reader or Adaptor to a Code Builder: someone
who leverages AI to do the tasks of a Code Writer, but with less
training. A proficient Code Builder, like a Code Writer, is able to
create new programs from scratch, rather than relying on existing
code; unlike a Code Writer, a Code Builder accomplishes this via a
Code LLM. A successful Code Builder, like a Code Adaptor, will also
be able to identify and adapt useful code from a variety of sources.

Below we discuss two current barriers, challenges with respond-
ing to the model’s output and a lack of technical communication
skills, that prevent current non-expert programmers from becom-
ing Code Builders. We begin by discussing possible interventions
for these skills gaps, before turning to broader ideas for training
future Code Builders and concluding with our concerns about how
this future could unfold.

10A number of factors could contribute to the elevated math anxiety we observe,
including the educational effects of the Covid-19 pandemic, task-related bias, and the
high proportion of non-STEM majors in our sample (see Appendix A.4, C.3).
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6.1 Bridging the communication gap
Our findings highlight the enduring challenges of technical com-
munication. Just as programmers have grappled for decades with
how to effectively communicate in the workplace [3, 10, 51], they
are now grappling with how to communicate effectively to LLMs.
Our results support a strong emphasis on technical communication
for code-building. The low reliability and eventual success rates
of prompts show that without training, non-programmers will not
use language that leads Code LLMs to produce working code.

Non-programmers identified two distinct challenges in wording
their prompts: the challenge of describing their intent in natural
language (Trouble Writing a Description, n = 22) and challenge of
using the “right” language for the model (Wording Matters, n = 28),
in addition to non-specific communication issues (Charlie Doesn’t
Understand Me, n = 22).

This first challenge emerged both in our study and in Nguyen
et al. [60], suggesting that mapping computational intents to natural
language descriptions is an ongoing learning process for students
beyond CS1. Given the increasing importance of clear technical
communication, non-experts should be offered robust opportunities
for practicing technical communication skills. The CS education
community has long advocated the use of Explain In Plain English
problems, which ask students to describe computational concepts
in everyday language [17, 54, 76, 79], yet their use has been limited
by the challenges of scaling and grading [13, 25]. Nguyen et al.
[60] suggest that Code LLMs might provide a way to give feedback
for these exercises. This is a useful starting place, but for non-
experts, we envision a range of activities that practice technical
communication to different audiences: in most workplaces, they
will need to be able to communicate not just to LLMs, but also to
coworkers across a wide spectrum of computing literacy.

The challenge of programming terminology is specific to non-
programmer programmers. The fact that this was not a major theme
in Nguyen et al. [60] suggests that current CS1 courses succeed in
teaching coding terminology: in most classes, types and terminol-
ogy are covered in the first week. Educators believe that terminol-
ogy matters [2, 55] – our work suggests this will remain key in the
future. Code-building training should ensure that non-experts have
a strong grasp of programming terminology, as well as an under-
standing of the distinction between colloquial and technical lan-
guage, which was a point of frustration for our non-programmers.

Although we advocate for the primacy of technical communi-
cation in worker skill development, we also believe that model
developers should work to address vocabulary issues. There is a sig-
nificant benefit for all users (both non-experts and experts) if models
can be more robust to variations in language choice. Moreover, our
case study of readingIceCream suggests that there are descrip-
tions that accurately describe the problem to a human, but are not
successful model prompts. While some observations may be model-
specific, our results indicate fundamental differences between how
non-programmers describe a problem versus how experts do.

6.2 Strengthening code understanding
Our study also highlights the challenges that non-programmers
face when it comes to evaluating model-generated code.We observe
a stark contrast between how non-programmers relate to model

output compared to the beginning CS1 students studied by Nguyen
et al. [60]. Although both groups discuss struggling to understand
model-generated code, the beginning students highlight unfamiliar
Python constructs, while our participants report no benefit at all
from reading the generated code or error messages. This is not
surprising, but it is concerning if non-expert use of Code LLMs is
to become widespread: non-experts will not be able to tell whether
the generated code is correct, safe, or even relevant to the task.

We envision a strong emphasis on code comprehension as a pri-
mary learning goal in non-expert training. While reading and writ-
ing code appear to be related skills [17, 54], most traditional CS1
courses prioritize writing code: assignments typically focus on the
task of writing a program, either from scratch or by filling in starter
code. However, code comprehension is arguably more important for
Code Builders, since they must be able to evaluate model-generated
code. Each run of a Code LLM may produce correct output, incor-
rect output, or a variety of error messages. Code LLM users must be
able to judge whether the generated code is correct and relevant to
their task. Our study handles this aspect of Code LLM use for our
participants by automatically running a pre-written suite of unit
tests. However, in real use cases, non-programmers would need to
be able to assess code correctness for themselves, either by writing
a set of unit tests that specify the intended behavior, or by some
other means. Code Builder training should incorporate lightweight
methods of teaching about testing and evaluating correctness early
on, as well as exercises in code comprehension [50].

Some non-programmers specifically mentioned error messages
as a barrier in their survey responses. CS education researchers
have focused on how to make error messages more actionable for
non-programmers [19, 57]. In fact, recent work has used LLMs to
better explain and present error messages [49]. However, Becker
et al. [9] survey 50 years of research into possible interventions and
conclude that error messages remain a barrier to student under-
standing. Even though error messages have significant pedagogical
importance, many interventions remain challenging to apply in
practice. We believe this area of study will endure even as program-
ming otherwise changes because of Code LLMs.

6.3 Code adaptation
We envision Code Builders as adept at adapting code from a variety
of sources, both human-written (i.e, from StackOverflow or Github)
and model-generated. This is a behavior that has been observed in
practice: Kery et al. [38] find that data scientists frequently work
by adapting and remixing existing code. We envision adaptation ex-
ercises that teach specific programming operations and explore the
space of possible programs that can be produced. These exercises
would require Code Builders-in-training to recognize “actionable”
elements of model-generated code.

As one example, consider the scenarios presented in Figure 5.
This figure presents a possible solution for laugh, the most challeng-
ing problem in both our study and Nguyen et al. [60]. We present
6 possible adaptation exercises, although many more are possible,
each targeting a different element of the laugh solution. For in-
stance, (4) asks students to consider how rangeworks, (5) addresses
return types, and (6) considers novel string formatting. We could
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def laugh(size):
big_string = ""
for i in range(size, 0, -1):

big_string += "h" + "a"*i + " "
return big_string[:-1]

Possible starting code 

Possible code adaptations
1) Adapt the code above to produce a series of 

“ah” rather than “ha” 

2) Adapt the code so that laugh works with any 
sequence of two letters 

3) Adapt the code so that laugh works for 
either integer or string inputs 

4) Adapt the code to produce a series of “ha”s 
with more “a”s over time, rather than fewer

5) Print, rather than return, the output 

6) Make each “ha” appear on a new line 

Figure 5: Possible ways to transform a code writing task
into a code adaptation task. The possible starting code repre-
sents the most difficult problem attempted by participants,
laugh. The six presented code adaptations suggest possible
activities that Code Builders-in-training could undertake.
We highlight the Python terms related to the adaptations in
the provided possible starting code.

also draw inspiration from existing work in CS education that fo-
cuses on identifying errors in code refactoring [63], which exercises
similar skills to adaptation: refactoring is essentially adapting one’s
own code for a new purpose.

6.4 Assessing appropriate use of Code LLMs
Thinking more broadly, effective Code Builders must be able to
assess and select among various interaction modes for working
with code. One component of this is understanding when it is not
effective or appropriate to use Code LLMs.

Current Code LLMs do not articulate a confidence level or know
whether their output is incorrect [75]. This makes it vital for users
to understand model limitations. Training programmers to trust
models implicitly could result in knock-on effects of invalid code in
the workplace. Non-expert programmers may encounter increased
risk: they may be more easily impressed by model capabilities,
since they lack the experience to identify instances of model fail-
ure. Although the non-programmers in our study actually rated
the model as less knowledgeable and capable than participants in
Nguyen et al. [60] (Appendix C), this likely reflects their relative

lack of task success, rather than critical evaluation of the generated
code. Specific methods to address these issues are worthwhile and
currently under study [72]. Work on AI/ML education may also
provide perspectives on possible approaches [33, 69].

In addition, non-expert programmers should be taught to con-
sider the broader implications of using Code LLMs. There are impor-
tant issues around copyright law and generative AI that have yet to
be settled [22, 34, 67, 68]. Moreover, in contexts that involve propri-
etary information, sensitive customer data, or information subject
to export control, it may not be appropriate to use Code LLMs at all,
since querying the model involves transferring data to the server
running the model, or, more commonly, the company providing
the Code LLM service. Finally, Code LLMs may be vulnerable to
adversarial attacks designed to compromise code security [1].

6.5 Concerns for the future
While our suggestions above are premised on the idea that Code
LLMs can help upskill non-expert programmers, we also have con-
cerns about how this future might unfold. At a high level, Code
LLMs (and generative AI more broadly) are evolving at a blistering
pace. This means researchers are studying Code LLM technology
as it is being deployed in real-world environments. This causes a
challenging inversion for educators: students have interacted with
the technology prior to their ability to adapt curricula [45].

There has been significant discussion [21, 24, 41] about the po-
tential economic knock-on effects of generative AI broadly. Code
Builder training should aim to prepare non-expert programmers
for such an economic outlook, while keeping in mind the learning
expectations of the field. We see this as a very tall ask indeed and
one that, without continued discussion, evolution, and critique,
could easily fail to do both.

Finally, non-expert programmers comprise a diverse group. An
important equity issue surrounding Code LLM deployment is the
issue of language barriers. Current Code LLMs offer limited support
for languages other than English [52, 77, 78]: although they are typ-
ically described as offering natural language-to-code interaction, in
fact, they only offer English-to-code. While the non-programmers
we study write and read fluently in English, non-expert program-
mers who use other languages will not benefit from Code LLMs at
all unless the technology supports their languages.

6.6 Recommendations
Above we have laid out a vision for how to train non-expert pro-
grammers to effectively leverage Code LLM models, emphasizing
the following key skills:

- Ability to communicate technical concepts clearly to a range
of audiences, including Code LLMs

- Ability to read code and evaluate its quality, predict its be-
havior, and assess its task relevance

- Ability to modify code from a variety of sources to accom-
plish new tasks

- Ability to assess when the use of Code LLMs is appropriate

While we believe that worker training could be impactful in
this area, our findings also have implications for people who build
generative AI for programming.
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Recommendations for Code LLM developers. Our work highlights
a usability gap between non-programmers and students with just a
single semester of computer science education. A key difficulty that
our participants faced was the inability to communicate their ideas
in a way that the Code LLM understood (Section 5.2). As model de-
velopers, we might feel that in these cases, it is the prompt that is to
blame: key details may have been omitted, or the description of the
input may be inaccurate. Although we feel that non-programmers
should be taught how to communicate with Code LLMs, at the
same time, Code LLMs should be able to handle more variation in
language than they currently do. A model that could handle under-
specified prompts would provide a significant boost to non-experts,
while also benefiting expert programmers.

In the post-task survey, participants brought up other ways that
the model could be more user-friendly. One suggestion was to give
feedback on the parts of the prompt that are unclear. pinkIndigo
noted, “When the response was “none” for the outputs, I was not
quite sure what part of my description was wrong, which was
frustrating at points. I think it would be really helpful for it to say
what part of it needs to be altered.” This relates to a key limitation of
current LLMs: they are not aware of what they do and do not know.
Having models that could identify specific parts of the prompt that
are causing uncertainty and ask the user for clarification is one
interesting direction for future work.

Finally, a key concern for model developers should be linguistic
equity. Although current Code LLMs are impressive, they only bene-
fit users who can communicate in English. Developing multilingual
Code LLMs should be a priority.

Recommendations for Code LLM interface developers. A consis-
tent theme in our participant responses was praise of the Charlie
avatar (Table 4). Several participants commented that the Charlie
avatar made them feel more comfortable performing the task, com-
plementing findings that personified programming may increase
motivation [48]. We observed frequent negative self-talk related to
programming in our non-programmer responses, a theme that is
not reported in Nguyen et al. [60]. This suggests that an engaging,
user-friendly design could be useful in confidence-building and
retention in learning environments aimed at non-experts, who may
arrive with math or programming-related anxieties.

6.7 Limitations
While our sample size and semi-replication form a solid foundation,
there are some inherent limitations to our design. The controlled
nature of the study design allows for precise data collection regard-
ing prompt-writing and editing, and facilitates comparison between
our non-programmers and Nguyen et al. [60]’s beginners. However,
the study environment differs in many ways from the real-world
environment (see Section 2) of the non-expert programmer, partic-
ularly, in the automated testing of generated code and the specific
programming tasks.

When studying Code LLMs, the choice of the underlying model
can have an impact on factors such as reliability and eventual
success. We used Codex to facilitate direct comparison with the
data on beginners from Nguyen et al. [60]. However, this has a
significant downside: replication of this study (as well as Nguyen
et al. [60]) is no longer possible, as Codex is fully deprecated as

of January 2024. We see this as an issue for researchers, but also
for the study of Code LLMs as a future of work technology more
broadly. We strongly encourage the use of open-source Code LLMs
[6, 52, 61] to better equalize access to Code LLM technology for
researchers and users.

Like prior work, we concentrate on the natural-language-to-code
interaction. Our findings may or may not generalize to multi-turn
modalities. Given their potential for explaining code as well as
generating code, a priority for future work should be investigating
how non-experts interact with conversational Code LLMs.

Finally, this study, and our vision for Code Builder training,
should be understood through a particular cultural lens. Our empir-
ical evidence is drawn from non-programmers at selective liberal
arts colleges, most of whom were non-STEM majors. This popula-
tion may have more negative impressions of technology than the
average non-expert. Non-expert programmers comprise a diverse
group, and our study will only generalize so far. We welcome future
work which considers these questions in other environments.

7 CONCLUSION
In this paper, we consider how the advent of generative AI tools
for programming will impact non-expert programmers. Code LLMs
promise to remove barriers to working with code by allowing users
to interact via natural language. For many reasons, however, non-
experts may not be able benefit from Code LLMs as experts do.
Code LLMs therefore pose both a threat and hold out a promise to
non-expert programmers: they could be used either to bridge the
skills gap between non-experts and experts, or to widen it.

We present qualitative and quantitative results from a study
of non-programmer interactions with a Code LLM. We focus on
prompt-writing and prompt-editing processes, and identify key
struggles that non-programmers face in using Code LLMs effec-
tively: a lack of access to technical vocabulary and an inability
to understand code or error messages produced by the model. By
comparing our results to Nguyen et al. [60]’s work with beginning
programmers, we highlight the ways in which a traditional CS
classroom does and does not equip students to use Code LLMs
effectively. Moreover, our qualitative results reveal the high stakes
involved in non-programmer interactions with Code LLMs: failed
interactions can lead non-programmers to believe that they are not
well-suited for programming or problem-solving.

Building upon our experimental findings, we proposed key skills
that non-expert programmers need in order to leverage Code LLMs
in Section 6. We describe a vision for training non-expert pro-
grammers to use Code LLMs effectively in order to work towards
a generative AI future that bridges the gap between experts and
non-experts.
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A ADDITIONAL METHODOLOGICAL DETAILS
A.1 Respect for Participants
Our study was conducted under oversight from our colleges’ Insti-
tutional Review Boards. We obtained informed consent from each
participant at the beginning of the experiment using a Qualtrics
form. We compensated participants with a $30 USD Amazon gift
card. The study was advertised as lasting 45 minutes; however,
most participants finished earlier. Participant prompts and the gen-
erated code are released publicly via the Open Science Framework
at https://doi.org/10.17605/OSF.IO/MXH35.

A.2 Qualitative Analysis of Demographic
Responses

As discussed in Section 4.2.2, the qualitative analysis of the open-
ended response questions in the post-task survey was performed
by both authors and makes up the primary qualitative dataset.

We also collected demographic information which contained
open-ended response questions by replicating Nguyen et al. [60]’s
approach. We present results which include data from two such
questions, one which asked about a participant’s major and the
second which asked about languages spoken in their household
as a child, in Apendix A.4 and Appendix C. As these questions
were exact copies of the questions from Nguyen et al. [60], and the
goal of aggregating responses was to present additional participant-
wide trends, a single author employed the same process as used in
Nguyen et al. [60] to categorize Language and Major data.

A.3 Screening Participants for Prior
Programming Experience

We screened each participant at the beginning of the session tomake
sure that they were eligible for the study. We asked questions about
their prior programming experience. Some examples of questions
asked include:

• Can you tell me a bit about any programming experience
you have had in the past?

• Have you built a website?
• Have you ever worked with statistical software like R or
Stata?

• Did you program in any classes in high school, or instance,
using Scratch in a Math course?

• Have you ever done an internship or after-school club that
involved coding?

A.4 Participant Demographics
Table 5 displays aggregated demographic information about partic-
ipants collected as part of the post-task survey.

B ADDITIONAL FINDINGS FROM STUDY OF
NON-PROGRAMMERS

B.1 Eventual Success Rates
Figure 6 shows the eventual success rates by individual problem for
our participants compared to the participants from Nguyen et al.
[60]. For the most part, these trends are similar to those in prompt
reliability across problems, as discussed in Section 5.1.
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Category Response N
International Student Status International 4

Domestic 63
First Generation College Student Status First Generation 7

Not First Generation 60
High School Attended Public 47

Private 18
Other 2

Languages Spoken in Household As Child Monolingual in English 39
Monolingual Not in English 10
Multilingual 18

Major Division Natural Science 18
Social Science 29
Humanities 25

Table 5: Participant Demographics
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Figure 6: Mean eventual success rates for student-written prompts from this study’s non-programmers and Nguyen et al. [60]’s
beginners

Figure 8 shows the eventual success rates by problem category
for our participants compared to the participants from Nguyen et al.
[60]. Somewhat surprisingly, we find that non-programmers do best
in the loop category, and worst in the string category, the opposite
of Nguyen et al. [60]’s beginning students.We hypothesize that non-
programmers struggled with the right way to refer to data types
like lists and strings, but were able to avoid problem decomposition

in many loop problems, while beginners attempt to describe these
tasks step-by-step, but were unable to do so effectively.

C ADDITIONAL FINDINGS FROM POST-TASK
SURVEY

In this section, we report additional findings from the post-task
survey. We measure the statistical reliability of measure differences
using Student’s 𝑡-tests, with a significance level of 𝛼=0.05.
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AI Perception Scale Current Nguyen et al. [60] p-value
"Ignorant - Knowledgeable" 3.21 3.68 0.003
"Machinelike - Humanlike" 1.79 2.39 <0.0001

"Responding rigidly - Responding elegantly" 2.70 3.13 0.009
"Unfriendly - Friendly" 3.91 4.20 0.08

"Incompetent - Competent" 3.13 3.58 0.002
Table 6: Non-programmer and beginning student ratings of the model on scales from Bartneck et al. [8] (scale ranges from 1-5)
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Figure 7: Ethical comparisons between AI applications, non-programmers compared to beginners from Nguyen et al. [60]
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Figure 8: Eventual success rates by problem category
(Loops, Lists, Strings, Conditionals) from this study’s non-
programmers and Nguyen et al. [60]’s beginners

C.1 AI Perception Ratings
As part of the post-task survey, participants rated Charlie’s qualities
using Bartneck et al. [8]’s AI Perception scale.11 Overall, partici-
pants gave the model fairly high ratings on friendliness, compe-
tence, and knowledgeability (Table 6). Although the broad trend is
similar to what was found in Nguyen et al. [60], non-programmers
in our study gave significantly lower ratings for competence and
knowledgeability compared to their beginning students. We posit
that non-programmers perceived the model as less capable because
of how often communication failed. Non-programmers were also
significantly more likely to rate the model as machine-like; this
aligns with the remarks non-programmers made about the model’s
inflexibility with respect to wording.

The post-task survey asked participants for any other thoughts
about Charlie. Somewhat surprisingly, most comments related to
the Charlie avatar, though a smaller number addressed the task or
experimental design. A large number of participants expressed ap-
preciation of the Charlie persona or avatar. An illustrative example
is thistleHazelnut’s “I think the cow is very cute!” However, one
participant did express discomfort with the anthropomorphism of
AI.

11Similar adaptation for an educational use case was done by Druga and Ko [20].
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Figure 9: Optimism or pessimism about AI’s impact, non-
programmers compared to beginners from Nguyen et al. [60]

C.2 AI Familiarity
Table 7 shows how many participants reported having heard of a
popular LLM or Code LLM before the study.

Codex/Copilot GPT-3 ChatGPT N
X X ✓ 47
X ✓ ✓ 6
✓ X ✓ 9
✓ ✓ ✓ 3
X ✓ X 2

Table 7: Responses toHave you heard of Codex, Copilot, GPT-3,
or ChatGPT?

C.3 Math Anxiety By Major
Table 8 shows participant ratings on the Math Anxiety question by
major [4, 29]. Students majoring in a Natural Science, on average,
rated themselves as less math-anxious than students majoring in a
Humanities or Social Science field.

Major Division Mean Math Anxiety Rating
Humanities 6.36
Social Science 6
Natural Science 3.89

Table 8: Average Math Anxiety Ratings by Major Division
(scale ranges from 0-10)

C.4 Non-programmer Outlooks on AI
Our post-task survey also explored student attitudes towards AI
more broadly. When asked whether they felt more optimistic or
pessimistic about how AI will impact society, about two-thirds of
our non-programmers identified as pessimists, an inversion of the
findings from Nguyen et al. [60] (Figure 9).

We also asked students to compare the ethicality of the Code
LLM they used to three other uses of AI in the workplace. Most par-
ticipants indicated that the Code LLM was less ethically concerning
than using AI to screen job applicants, to write news articles, and to
grade exams (Figure 7). However, compared to Nguyen et al. [60],
more participants felt that writing news articles with AI was less
ethically concerning. This went against our expectations, since the
non-programmers were drawn heavily from non-STEMmajors, and
may be more at risk of losing employment opportunities from AI
writing systems. However, these participants may envision using
AI writing systems to facilitate, rather than automate, their future
work.
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